GENERALIZED THERMAL CONDUCTIVITY OF DISSIMILAR HEAT-SENSITIVE BODIES
CONNECTED BY A THIN INTERMEDIATE LAYER
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Generalized conditions are formulated for the nonideal contact of dissimilar
heat-sensitive crystalline solids in order to determine their Kirchhoff vari-
ables.

The studies [1, 2] formulated generalized conditions of nonideal thermal contact of dis-
similar solids and generalized heat-transfer boundary conditions for bodies with thin coat-
ings for the case when the thermophysical characteristics of elements of the piecewise-uni-
form bodies in question are independent of temperature. Generalized boundary conditions for
heat-sensitive bodies with thin coatings were formulated in [3]. Here, we present general-
ized conditions of nonideal thermal contact of dissimilar heat-sensitive bodies connected
through a thin, heat-sensitive intermediate layer.

Let two nonmetallic crystalline bodies be connected by a thin, nonmetallic intermediate
layer. The thermal conductivities and volumetric heat capacities of the bodies are different
and at low temperatures are proportional to the cube of the absolute temperature [4, 5]:

M () = %t ¢ (t)=Pd2 (@ =0, 1, 2). (L)

The system is heated by internal heat sources and then by radiation. Generalized con-
ditions of ideal thermal contact exist between the bodies and the intervening layer.

In this case, we have the following equation of generalized heat conduction [6-8] to de-
termine the temperature field in the piecewise-uniform body, referred to a system of curvi-
linear orthogonai coordinates (&, B, Y)
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along with the generalized conditions of ideal contact
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generalized Stefan—Boltzmann boundary conditions
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_With allowance for Egs. (1), boundary-value problem (2)-(5) for crystalline solids is
completely linearized by means of Kirchhoff variables
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and it takes the following form for the-thin intermediate layer, referred to curvilinear
coordinates of the mixed type, after the appropriate simplifications [2]
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If we average Egs. (6), (8), and (9) in accordance with the integral characteristics of
the Kirchhoff variable [9]
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we obtain:
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Using the operator method, we write the general solution of Eq. (6) in the form
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where
v
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Taking Eqs. (10) and (14) into account, we find that
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Inserting Egs. (15) into (11-13), considering conditions (7), passing to the limit at
§ > 0 in the resulting relations, and keeping the constants Ay, C,, r,, Wy, W,*, we obtain
the following generalized conditions for the contact of crystalline bodies connected by a
thin intermediate crystalline layer:
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Let us examine special cases of conditions (16).

1. If the thermophysical characteristics of the two bodies are identical (A; = A, = 1},

Kp = Ky = Kk, Tp't) = 1,820 = 1), We* = 0, qo* = 0, n; = -n, = n, then instead of (16-18) we

have:
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2. If () >0, (1) £ 0, ©,.(2) # 0, then instead of (16-18) we have:
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4. For metals (1,(°) = r, = 1.(2) = 1) we obtain:
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where £ = 1 + 1,.(3/31).

Finally, multiplying each term of conditions (16) by r, and ignoring the terms contain-

ing the products A,r,, Cyr,, we arrive at the following boundary conditions:
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Passing to the limit at Tr(l) > 0, Tr(z) + 0 in conditions (22-24), with allowance for
the limit
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The above-formulated boundary conditions (16-18) and the special cases that follow from
them with constant values of the thermophysical characteristics were presented in [1], while
conditions (25), with Wy, = 0, were presented in [10].

NOTATION

ti, Wi, Tr(i) (i =0, 1, 2), temperature, density of the heat sources, and relaxation
time of heat flux in the intermediate layer and the first and second mated bodies; Ai(ti),
K1 ci(ti), their thermal conductivities, reference thermal conductivities, and volumetric
heat capacities; Ei, apparent radiative heat-transfer coefficients from the surfaces Si';
S;', outer parts of the surfaces bounding the intermediate layer and the first and second
bodies; qj, heat fluxes of the radiators; nj, nji', normals to the surfaces S;j, S3'; S;, mid-
dle surface of the intermediate layer; S;, S,, surfaces of contact of the first and second
bodies with the layer; A, B, coefficients of the first quadratic form of the surfaces Sji;
H,, H,, H;, Lamé constants; Wy, Wo*, density of the heat sources and density of the "moments"
of the heat sources, referred to a unit area of the middle surface of the layer and charac-
terizing the nonuniformity of the source distribution through the thickness of the interme-
diate layer.
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